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Abstract
We investigate the resonance mechanisms for discrete breathers in finite-size
Klein–Gordon lattices, when some harmonic of the breather frequency enters
the linear phonon band. For soft on-site potentials, the second-harmonic
resonances typically result in the appearance of solutions with non-zero tails,
phonobreathers. However, these tails may be very weak, and for small systems
where the phonon frequencies are sparsely distributed, we identify ‘phantom
breathers’ as being practically localized solutions, existing with frequencies
in-between the phonon frequencies. For particular parameter values the tails
completely vanish, and the phantom breathers decay exponentially over the
whole system. We also describe briefly a first-harmonic resonance with
a constant-amplitude wave and the generation of phonobreathers for hard
potentials.

PACS numbers: 63.20.Ry, 05.45.−a, 05.50.+q, 45.05.+x

1. Introduction

Discrete breathers, or intrinsically localized modes, are exact, time-periodic and spatially
localized, solutions of nonlinear discrete systems. They are universal in the sense that their
existence does not require any integrability properties of the mathematical model, and they
may exist in finite as well as infinite systems, in arbitrary dimension and in the absence
as well as presence of disorder. See, e.g., [1, 2] for general reviews and [3, 4] for more
recent developments. A discrete breather belongs generically to a one-parameter family of
exact solutions to some given model, where the parameter chosen can be, e.g., its frequency,
action or energy. In addition, these breather families are generically robust, surviving for
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small perturbations of the model, so that they can also be continued as a function of some
model parameter. Moreover, discrete breathers are often (but not always) linearly stable,
and even though this does not imply their strict stability for all times, at least any small
initial perturbation will grow slower than exponentially with time, so that a slightly perturbed
breather typically will have a very long lifetime. Obviously, the lifetime of the unperturbed
breather will be infinite as it is an exact solution.

The fact that the energy of a time-periodic discrete breather can remain localized forever
without being dispersed to its surroundings basically rests on two properties of the system:
nonlinearity and spatial discreteness. To avoid energy dispersion of a localized anharmonic
oscillatory mode into small amplitude vibrations, generically one should avoid resonances
between harmonics of the mode frequency and the frequencies of the linear oscillation modes,
‘phonons’. Denoting the breather frequency with ωb and the phonon frequencies with ω0(q),
this non-resonance condition becomes

mωb �= ω0(q) ∀m integer. (1)

The role of the nonlinearity is then to provide a nontrivial dependence of the mode frequency
on its amplitude (or, equivalently, on its action), so that the frequency of a finite-amplitude
oscillation does not remain fixed at its linear value. Furthermore, the role of the discreteness
is to provide an upper bound to the linear phonon spectrum (and possibly gaps within it), and
thus renders possible the scenario where not only the fundamental mode frequency but also
all its higher harmonics lie outside (or in gaps within) the linear spectrum. These intuitive
physical arguments for the existence of localized oscillatory modes as exact solutions have
been turned into several rigorous existence proofs [1, 5–11], and spatial exponential decay for
the oscillation amplitudes has been proved under quite general conditions [5, 12].

Thus, we generically do not expect to find strictly (e.g. exponentially) localized breather
solutions when the non-resonance condition (1) is violated. A typical scenario appearing
in simple models with gapless linear spectra when continuing (e.g. numerically) a breather
versus its frequency (or versus some model parameter) towards regimes of linear resonance was
described in [13]. When the fundamental breather frequency ωb approaches the linear phonon
band, the size of the breather generally diverges and its maximum amplitude goes to zero, and
the breather approaches a linear band edge phonon [14]. On the other hand, when a higher
breather harmonic (m > 1 in (1)) approaches the phonon band while the fundamental harmonic
remains outside, a new type of solution smoothly appears from the continuation of the breather.
This solution, which has been termed alternatively phonobreather [1, 13] or nanopteron
[2, 15] consists of a (nonlinear) superposition of a localized breather oscillating at the
fundamental frequency and an extended band edge standing-wave phonon tail oscillating at
the higher harmonic. In more complicated models, e.g. with a nonmonotonic linear dispersion
relation ω0(q) [16], phonobreathers may also result from resonances at the fundamental
breather frequency ωb.

As has been remarked already in [13], if the numerical continuation of a localized breather
with a higher harmonic entering the linear phonon band is performed ‘with bigger steps and less
care’, other phonobreather-like solutions might be found but with ‘defects’ in the phonon tail.
It was also remarked in [13] that for small finite systems even apparently localized breather-
like solutions with negligible tails could be found, as the large separation of the discrete
phonon frequencies ω0(q) in a small system could allow for windows of non-resonance inside
the band. We will here introduce the term phantom breather for this type of practically
localized solution, possibly existing in frequency intervals which should be forbidden for
localized solutions in infinite systems. It is the purpose of the present paper to describe, by
a systematic numerical analysis of a simple model system, a typical bifurcation scenario for
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the penetration of a breather harmonic into the linear phonon band for finite-size systems,
and to provide a working definition of ‘phantom breathers’ in terms of their properties. For
generic values of the model parameters, the phantom breathers are found to have small but
non-zero tails with oscillation patterns corresponding to nearby phonon modes; however, for
particular parameter values the contributions from modes having the same pattern but opposite
phases may cancel each other and yield phantom breathers which are exponentially localized
over the whole system. It should be noted that a related problem was considered in [17, 18]
where the continuation of a breather inside the linear band was investigated for a disordered
system. However, even though as we will see there are many similarities in the bifurcation
scenarios, the problems are fundamentally different since for the disordered system also the
linear modes are exponentially (Anderson) localized, and as a consequence strictly localized
intraband breathers could be found generically also for infinite systems in the latter case [18].

The outline of this paper is as follows. In section 2 we present the model system, which
we take to be a one-dimensional Klein–Gordon (KG) lattice, and briefly describe the ideas
developed in [1, 5] to classify breather-type solutions by using an anticontinuous limit. In
section 3 we apply numerical continuation techniques to analyse a number of different aspects
of breather–phonon resonances in finite systems. The main emphasis is put on the case with a
soft potential, which we choose to be of Morse type, and we describe the smooth continuation
of breathers into phonobreathers, as well as the occurrence of ‘phantom breathers’ and the
mechanism leading to the vanishing of their tails at special parameter values. We also describe
briefly a first-harmonic resonance with a constant-amplitude (q = 0) wave, and show an
example of the generation of phonobreathers in a hard on-site potential, which is taken to be
quartic. Section 4 concludes the paper, and in appendix A we illustrate how the technique
of band analysis [1] can be used to describe additional aspects of the breather–phonobreather
transition. Some further considerations of the bifurcation scenarios are presented in [19].

2. The Klein–Gordon lattice: continuation of breathers and multibreathers from an
anticontinuous limit

The model system that we will consider consists of a one-dimensional chain of N particles
of unit mass, oscillating in an anharmonic on-site potential V (u) and coupled by a harmonic
nearest-neighbour coupling CK. Denoting by un(t) the displacement of the particle n, the
Hamiltonian is written as

H =
N∑

n=1

[
1

2
u̇2

n + V (un) +
1

2
CK(un+1 − un)

2

]
. (2)

We will consider closed chains and impose the periodic boundary conditions u0 = uN,

uN+1 = u1. The equations of motion then take the form of a discrete nonlinear Klein–Gordon
equation,

ün + V ′(un) − CK(un+1 + un−1 − 2un) = 0. (3)

We distinguish between soft and hard on-site potentials V (u), for which the oscillation
frequency decreases and increases, respectively with increasing amplitude of the oscillation
(or, equivalently, with increasing action). In this paper we mainly consider the soft case, and
as a concrete example we choose the Morse potential,

V (u) = 1
2 (e−u − 1)2. (4)

As an example of a hard potential, we choose the quartic potential,

V (u) = u2

2
+

u4

4
. (5)
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In both cases we have normalized to have V ′′(0) = 1, i.e. the oscillation frequency is unity
for small-amplitude (harmonic) oscillations in the absence of coupling.

For a given solution {un(t)} to (3), the dynamics of a small-amplitude perturbation {εn(t)}
can be approximated by the linearization of (3) around {un(t)}, which yields the Hill equations

ε̈n + V ′′(un(t))εn(t) − CK(εn+1(t) + εn−1(t) − 2εn(t)) = 0. (6)

In particular, for un ≡ 0, the standard harmonic plane waves with wave vector q and frequency
ω0(q) are obtained,

εn(t) = ε cos(qn − ω0(q)t) (7)

describing the spectrum of the linear (phonon) oscillation frequencies through the dispersion
relation

ω2
0(q) = 1 + 4CK sin2 q

2
. (8)

Thus, the linear spectrum is bounded to the frequency interval [1,
√

1 + 4CK].
Localized anharmonic solutions (discrete breathers) with frequency ωb fulfilling the non-

resonance condition (1) are then generally found with frequencies below the linear band, i.e.
ωb < 1, for soft potentials, and above the linear band, i.e. ωb >

√
1 + 4CK, for hard potentials.

A convenient way to identify breather-type solutions is to consider the so-called anticontinuous
[1, 5] limit of uncoupled oscillators, i.e. to let CK → 0. Restricting to time-reversible solutions
fulfilling un(t) = un(−t), a general time-periodic solution with period Tb = 2π/ωb can, at
this limit, be described by specifying the particular oscillatory state of the nth particle through
a code σn defined as [1]

• σn = 0 : for oscillator n at rest;
• σn = +p : for oscillator n oscillating at frequency pωb in phase with some chosen

reference solution;
• σn = −p : for oscillator n oscillating at frequency pωb in antiphase with the reference

solution;

where p is an arbitrary positive integer. Then, assuming the non-resonance condition (1) to be
fulfilled, these solutions are proved [1, 5] to be uniquely continuable up to some finite value
of the coupling CK, and thus each anticontinuous coding sequence {σn} identifies uniquely
a particular time-periodic solution with period Tb. We define the simple breather to be the
solution with code [. . . 00000100000 . . .], i.e. the solution for which one single site oscillates
at frequency ωb while all other sites are at rest at the anticontinuous limit. All other time-
periodic solutions that can be obtained by unique continuation from the anticontinuous limit,
corresponding to more than one oscillating site at this limit, are called multibreathers [1]. In
general, for infinite systems, we will use the term multibreather for solutions with finitely as
well as infinitely many sites with σn �= 0. In the first case, the solution will still be localized,
while in the second case the solution is obviously extended.

A particularly interesting class of multibreather solutions can be constructed by the
periodic (or, for an infinite system, possibly quasiperiodic) repetition of the codes +p, 0,−p

obtained by writing σn = pχ(qn + φ), where the function χ(x) is 2π-periodic and, in the case
of a soft potential, defined for x ∈ [−π, π] as [20, 21]

χ(x) =



+1 for (π − q)/2 � x � (π + q)/2
−1 for −(π + q)/2 � x � −(π − q)/2
0 elsewhere.

(9)

As long as the amplitude un and coupling CK remain small, these solutions were
found [20, 21] to continue smoothly to harmonic standing-wave phonons of the form
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un(t) ∼ sin(qn + φ) cos(pωbt) when their frequency pωb approaches the linear oscillation
frequency ω0(q) given by (8). Thus, we can identify these solutions as the nonlinear standing-
wave phonons. For a hard potential, the transformation σn → (−1)nσn of the above generated
coding sequence yields nonlinear standing-wave phonons with wave vector π −q with similar
properties [21].

Another type of multibreather solution, which will be of particular interest in this work,
is the phonobreather, which can be constructed by superposing the anticontinuous coding
sequences for a standing-wave phonon and a simple breather. For a soft potential, in order
to yield a small-amplitude tail the phonon part should oscillate at a higher harmonic of the
fundamental breather frequency ωb. So, for example, phonobreathers formed with the phonon
wave vector q = π will have codes of type [· · · + 2 − 2 + 2 − 2 + 2 ± 1 + 2 − 2 + 2 − 2 +
2 · · ·], [· · · + 2 − 2 + 2 ± 1 − 2 + 2 − 2 · · ·] (symmetric and antisymmetric with respect to the
central breather site, respectively) or [· · ·+ 3 − 3 + 3 − 3 + 3 ± 1 + 3 − 3 + 3 − 3 + 3 · · ·] etc. By
contrast, for a hard potential, to obtain a small-amplitude tail the breather frequency should
be a multiple of the phonon frequency so, for example, the phonobreathers formed with the
phonon wave vector q = 0 will have codes of type [· · · + 1 + 1 + 1 + 1 + 1 ± 2 + 1 + 1 + 1 + 1 +
1 · · ·], [· · ·+1+1+1+1+1±3+1+1+1+1+1 · · ·] (and their antisymmetric counterparts) etc.

3. Breather–phonon resonances analysed through numerical continuation

The numerical continuation of an arbitrary multibreather solution,defined by its anticontinuous
coding sequence σn, versus, e.g., the coupling CK and/or the frequency ωb = 2π/Tb can be
performed using standard iterative techniques (see, e.g., [13]), where for each new parameter
value a numerically exact solution is calculated from a trial solution obtained in the previous
iteration step. In each iteration step, a modified Newton algorithm, described in detail in
[17], is used to find solutions {un(t)} which are time reversible and time periodic with the
desired period Tb to an accuracy which is only limited by the computer precision. When
the coding sequence of the solution has a definite symmetry, the numerical continuation is
facilitated by explicitly imposing a symmetry condition in the Newton scheme to restrict the
space of solutions to those compatible with this symmetry [21]. Once the solution {un(t)} is
determined, we obtain also its linear stability properties from the numerical integration of the
Hill equations (6) over the period Tb. Relating the 2N-dimensional vectors ({εn(0)}, {ε̇n(0)})
and ({εn(Tb)}, {ε̇n(Tb)}) defines a symplectic 2N × 2N Floquet matrix F0({un}),({εn(Tb)}

{ε̇n(Tb)}
)

= F0

({εn(0)}
{ε̇n(0)}

)
(10)

and the solution {un(t)} is linearly stable if and only if all eigenvalues � = r eiθ of F0 lie on
the unit circle.

3.1. The Morse potential

Considering now the soft Morse potential (4), we will continue numerically a simple breather
defined at the anticontinuous limit CK = 0 with frequencyωb < 1 and code [. . . 00001000 . . .],
and our particular interest lies in describing the regime where the second harmonic 2ωb enters
the phonon band defined by (8). This continuation, which will be performed by varying one of
the parameters (ωb, CK), is schematically illustrated in figure 1. As shown in figure 1(b), it is
often more convenient to visualize the penetration of higher harmonics mωb into the phonon
band 1 < ωb <

√
1 + 4CK as a penetration of the fundamental frequency ωb into one of the

bands 1
m

< ωb < 1
m

√
1 + 4CK. Typically, we will follow two different kinds of path illustrated
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1

Figure 1. Schematic picture in the (ωb, CK)-plane of the penetration of a breather harmonic into
the linear phonon band. (a) Direct representation with the band 1 < ωb <

√
1 + 4CK and the

breather harmonics mω1 (m = 1, 2, 3, . . .); (b) alternative representation with a sequence of bands
1
m

< ωb < 1
m

√
1 + 4CK and only the fundamental frequency ωb = ω1.

by the lines A-B-D-E-F and A-B-C in figure 1(a), respectively. In the first case, we can study
the behaviour as the second breather harmonic traverses the whole band by decreasing ωb

for fixed CK and then for fixed ωb < 0.5, a continuation back to the anticontinuous limit by
decreasing CK can be performed to check the code of the solution after the crossing of the
phonon band (as we shall see, this code is generally different from the original code). With
the second path, increasing CK at constant ωb, in addition to analysing the entrance into the
band we can also obtain the behaviour of the solution at large couplings, which typically also
implies large oscillation amplitudes.

3.1.1. Smooth continuation into a phonobreather. A typical scenario appearing for a smooth
continuation by decreasing ωb along a path B-D-E in figure 1(a) is illustrated in figure 2.
At the point D, where ωb = 1

2

√
1 + 4CK (≈ 0.574 46 for CK = 0.08 as in figure 2), the

second breather harmonic enters the phonon band, and we observe (figure 2(a)) how the
previously exponentially decaying breather tail acquires non-decaying oscillations and thus
a phonobreather form (cf [13]). The wave vector of the phonon tail corresponds to that of
the first resonating phonon, which is the band edge phonon q = π . By further decreasing
the frequency until ωb < 0.5 and then continuing the solution back to the anticontinuous
limit (path D-E-F in figure 1(a)), we confirm that the code of the solution for the system of
size N = 20 is [+ 2 − 2 + 2 − 2 + 2 − 2 + 2 − 2 + 2 − 2 + 1 − 2 + 2 − 2 + 2 − 2 +
2 − 2 + 2 − 2]. We should stress that this continuation from breather to phonobreather is
unique and reversible, i.e. starting with a phonobreather with the above code at a point F,
the continuation F-E-D-B-A gives back the simple breather at point A. Thus, there is no true
bifurcation associated with this breather–phonon resonance in a finite-size system. Instead,
the typical behaviour of the Floquet eigenvalues on the unit circle around the point of resonance
is as illustrated in figures 2(b) and (c). Approaching the point D (ωb ≈ 0.5745) from above
the eigenvalue pair corresponding to the band edge phonon q = π approaches +1 (θ = 0), but
instead of colliding they repel each other and move away again from +1 along the unit circle.
Thus, at the point where the breather acquires a phonon tail we generally observe an avoided
collision of Floquet eigenvalues. However, as illustrated in figure 2(d), the gap defined by
the distance in angle between the pair of eigenvalues at their closest approach decreases when
the system size increases, so that the avoided collision approaches a true collision at +1 when the
system size goes to infinity. A similar scenario with avoided eigenvalue collisions was also
observed [17] for a disordered KG system (with random harmonic oscillation frequencies)
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Figure 2. Amplitudes (a) and angles of Floquet eigenvalues (b), (c) for a simple breather penetrating
the linear phonon band along a line B-D-E in figure 1(a), in a Morse KG system of size N = 20
with CK = 0.08. The breather transforms smoothly into a phonobreather at the point ωb ≈ 0.5745
where the avoided eigenvalue collision at � = 1 occurs (enlarged in (c)). As shown in (d), the
size of the ‘gap’ around θ = 0 at ωb ≈ 0.5745, defined as the smallest difference between the
eigenvalue angles ±θ , decreases with the system size N.

where certain spatially extended multibreathers with frequencies outside the linear band were
found to continue smoothly into localized breathers with fundamental frequencies inside
the band (which in this case is of pure point nature corresponding to Anderson localized
eigenmodes). For the disordered model, the avoided eigenvalue collisions were found not
only when the fundamental frequency entered the band but also at each discrete resonance
frequency inside the band, and in fact this cascade of avoided collisions was shown to be the
signature of a ‘good’ choice of coding sequence for the initial multibreather, in order to be
continuable to a strictly localized intraband breather [17].

There are some other points worth mentioning concerning the smooth breather–
phonobreather transition observed here. One interesting observation is that if the path
of the eigenvalues corresponding to the avoided collision in figure 2 is followed for the
phonobreather towards smaller frequencies, they will eventually approach +1 again, and
finally a true eigenvalue collision at +1 is realized (at ωb ≈ 0.4346 in figures 2(b) and (c)
for CK = 0.08), after which the eigenvalues go out on the real axis and create an instability
for the phonobreather. The location of this collision is essentially independent of the system
size. In appendix A we use the technique of band analysis [1] to better understand the
origin of this behaviour. There is also another eigenvalue collision at +1 (at ωb ≈ 0.4711 in
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figures 2(b) and (c)) where a pair of eigenvalues goes out on the real axis and yields an
additional instability. This corresponds to a resonance with the next phonon mode, which
is antisymmetric around the central breather site [19]. However, we should stress that it is
possible to perform the full breather–phonobreather continuation A-B-D-E-F in figure 1(a)
without encountering any collisions at +1, by keeping CK small on the path B-D-E and ωb

close to 0.5 on the path E-F.
Let us also remark that, as we use periodic boundary conditions, the scenario will be

slightly different for odd number of sites N than as shown in figure 2 for N even. Namely,
for odd N the first eigenmode corresponding to the band edge linear phonon q = π will be
antisymmetric with respect to the central breather site (where the mode necessarily has a defect
in the sequence of alternating signs) and thus it does not couple to the symmetric breather. As
a consequence, we will observe a true eigenvalue collision at +1 close to the point D, which
produces a narrow regime of instability (the analogue of the antisymmetric resonance for
N = 20 described above), but no breather–phonobreather transition. This transition instead
occurs at the next phonon resonance, with a resonating phonon mode whose coding sequence
has a defect at the boundary compared to the pure π-phonon, making it symmetric around
the breather centre. Also in this case, the breather–phonobreather transition is signalled by an
avoided eigenvalue collision [19].

An example of the continuation along a path A-B-C (i.e., by increasing the coupling at
constant frequency) is shown in figure 3. The initial scenario for the smooth continuation of
the simple breather into a phonobreather with a q = π phonon tail is just as described above.
Then, as seen in figure 3(a), when CK increases the amplitude of the phonon tail increases while
the breather widens and oscillations appear in its shape. At a certain point (CK ≈ 0.3535
for ωb = 0.6 and N = 60 as in figure 3), the breather disappears and the phonobreather
transforms into a pure q = π nonlinear phonon with frequency 2ωb. This transformation is
associated with a collision of Floquet eigenvalues at +1 as illustrated in figure 3(d) (a period-
doubling bifurcation in the direction of decreasing CK). In fact, exactly at the bifurcation
point the numerical Newton method does not converge as the corresponding matrix [17]
becomes non-invertible, but this is not observed unless the continuation is performed with
extremely small steps in CK (∼10−9 or smaller) when approaching this point. The exact
location of this bifurcation depends only weakly on the system size, e.g. for N = 20 it occurs
at CK ≈ 0.3518. For a further increase in coupling the phonon amplitude is further amplified,
and finally it diverges when CK = ω2

b (=0.36 in figure 3). This is a consequence of the
shape of the Morse potential (4) which becomes flat for large u, so the amplitude divergence
corresponds to the particles leaving their potential wells. In the large-amplitude limit, the
phonon dispersion relation can be calculated by neglecting the on-site potential in (3), which
yields ω2

∞(q) = 4CK sin2(q/2) in agreement with the numerically observed value for the
amplitude divergence when ω∞ = 2ωb and q = π .

3.1.2. ‘Phantom breathers’. As we have just illustrated above, the smooth continuation of
a simple breather in a soft potential generally yields the formation of a phonobreather with a
tail corresponding to a q = π phonon (possibly with a defect at the boundary) as the second
breather harmonic enters the phonon band. However, in principle it is possible to construct
phonobreathers with second-harmonic tails having an arbitrary wave vector q, compatible with
the system size and the boundary conditions, by continuing solutions from the anticontinuous
limit where the tail is generated using (9) for the desired q and p = 2. These solutions
can however never be reached from a smooth continuation of a simple breather as the linear
dispersion curves (8) for general q �= π, 0 lie in the interior of the phonon band, and thus any
possible resonance leading to the formation of such a phonobreather from a localized breather
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Figure 3. Amplitudes {un(0)} (a) and angles θ of Floquet eigenvalues (b) for the smooth
continuation of a simple breather into the linear phonon band, in a Morse KG system of size
N = 60, with ωb = 0.6 and increasing CK. In (c), enlargement of the regime around the breather–
phonobreather transition in (b), the inset shows crossing of bands at the avoided collision; (d)
shows the behaviour of eigenvalues on the real axis around the point where the phonobreather
transforms into a pure nonlinear phonon with wave vector q = π .

would necessarily appear after the resonance with the q = π phonon. Consequently, if we wish
to reach a phonobreather with a phonon tail with q �= π by continuation of a simple breather,
it is necessary to ‘jump’ over the regime in parameter space corresponding to resonance with
the q = π phonon to avoid the breather transforming into a q = π phonobreather as described
above. Numerically, this can be achieved by tailoring the step-length in CK or ωb so as to be
large enough to jump over the resonance regimes, but small enough to yield convergence to
a solution close to the initial one. Now, as discussed in the introduction and also briefly in
[13], the fact that for a not too large finite system the linear dispersion curves will be rather
sparsely distributed opens the possibility for an interesting scenario: if one dispersion curve is
successfully ‘jumped over’, there may still be an interval left before the next dispersion curve
is reached, and in this interval we could expect to find a solution which is practically localized.
Such a solution will be called a ‘phantom breather’.

An example of solutions generated through this technique in its simplest fashion, by
following a path B-D-E in figure 1(a) with steps of constant length −0.01, is given in
figure 4(a). We note that inside the phonon band (0.5 < ωb < 0.5745) we generally
find solutions with small-amplitude tails, but the amplitude of the tails, as well as their wave
vectors, clearly varies as the phonon band is traversed. Now, each solution found through this
technique can be identified by smoothly continuing it through the phonon band and then along
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Figure 4. (a) Sequence of exact ‘phantom breather’ solutions found numerically in a Morse KG
model with N = 20 by starting from a simple breather at ωb = 0.6 and traversing the second-
harmonic phonon band at constant coupling (CK = 0.08) with large frequency steps (−0.01). (b)
Smooth continuation of the first phantom breather inside the band in (a), both towards smaller ωb
into the phonobreather [−22 − 202 − 22 − 22 − 21 − 22 − 22 − 220 − 22] and towards larger
ωb until it bifurcates with the phonobreather with code [−22 − 22 − 22 − 22 − 2212 − 22 −
22 − 22 − 22] at ωb ≈ 0.572 47. (c) Enlargement of the tail in (b) (note the new oscillations
that appear when increasing ωb approaching the bifurcation point). (d) Total energy (2) versus ωb
for the two phonobreathers connecting to the phantom breather, as well as for the phonobreather
connecting to the pure breather (solid line) as described in figure 2. The ‘phantom breather’ regime
of small-amplitude tails corresponds to the flatter part of the lower curve (0.571 � ωb � 0.572).

a path E-F down to the anticontinuous limit where its multibreather coding sequence can be
found. Of course, the sequence of multibreathers found in this way is rather arbitrary, since
the initial step length was chosen at random, but still some interesting remarks can be made
already from this simple experiment. We note for example that after the traversal of the phonon
band we have again a localized solution, but, in contrast to what might have been expected,
this solution is not a simple breather but a multibreather having a block [+2 − 2 + 1 − 2 + 2]
of five central sites with non-zero codes. In fact, this central block, with possible reversal of
the signs for the second-harmonic sites, is found for all the solutions in figure 4(a). Another
general remark is that the tails typically consist of alternating codes +2 and −2 (occasionally
with two identical codes at the boundary), but with one or several symmetrically placed pairs
of ‘defect’ sites of code 0 interjected. The number of zeroes in the codes generally increases as
the phonon band is traversed towards lower ωb. Thus, these tails have similar properties to the
nonlinear standing-wave phonons generated by (9), although they in general for a finite-size
system do not have a clearly defined wave vector q.

Let us now look more carefully at this scenario. In figure 4(b) we show the smooth
continuation of the first intraband solution found in figure 4(a), i.e. the solution appearing after
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the resonance with the q = π phonon at the band edge ωb ≈ 0.5745 has been jumped over.
Decreasing ωb the tail amplitude increases, and following the solution down to CK = 0 for
ωb < 0.5 yields the phonobreather coding sequence given in the figure caption, which contains
one symmetric pair of ‘defect’ zeroes. On the other hand, attempts to continue it towards larger
ωb fail at a certain point (ωb ≈ 0.572 47), where it bifurcates with the phonobreather solution
having a q = π tail, but with all codes ±2 having opposite signs compared to the phonobreather
formed by smooth continuation of the pure breather (cf figure 2). The bifurcation scheme
in the energy versus frequency plane is shown in figure 4(d). Looking more carefully at the
amplitude of the tail of the solution (figure 4(c)), we can identify a transition regime where the
shape of the tail oscillations changes from those characteristic of one of the two bifurcating
solutions to those characteristic of the other. In this transition regime (0.571 � ωb � 0.572 in
this example) the tail amplitude is very small and thus the solution here has the characteristics
of a phantom breather. In the energy diagram (figure 4(d)) this regime is identified by the flat
part of the lower (dashed) curve, which approximately is in continuation of the energy curve
corresponding to the pure breather (solid curve for ωb > 0.5745).

The properties observed above can be generalized to obtain a systematic way of generating
a whole class of solutions of phantom breather type. We will illustrate this procedure further
by the example shown in figure 5 for a path A-B-C at constant frequency. Figure 5(a)
shows the smooth continuation of the solution obtained by jumping over the two first phonon
resonances, i.e. those yielding the q = π phonobreather and the phonobreather in figure 4(b).
As before, we obtain the coding sequence of this solution by continuing it towards smaller
frequency until ωb < 0.5 and then towards smaller coupling until CK = 0, and thus find
a code with two symmetric pairs of defect zeroes in the sequence of alternating ±2 codes
(see caption of figure 5). As is clearly visible in figure 5(a), for these parameter values this
solution has a significant phantom breather regime (0.122 � CK � 0.142) where the tail
amplitude is negligible compared to the breather amplitude (see also tail enlargement in (c)).
Moreover, we note that the scenario by which the tail oscillations start to grow when increasing
CK is similar to the scenario for the pure breather–phonobreather transition (figure 3), and
also here associated with an avoided collision of Floquet eigenvalues at +1 (figure 5(b)). In
fact, as the coding sequence for the tail of the solution contains repeated units [+2 − 20]
it is close to that of a standing-wave phonon with wave vector q = 2π/3 (cf (9)), and the
numerically observed value for the avoided collision (CK ≈ 0.142) is also close to the value
CK = (2ωb)

2−1
4 sin2(q/2)

≈ 0.1467 obtained from (8) for a linear phonon resonance at q = 2π/3.
On the other hand, continuing the solution in figure 5 towards smaller coupling, we find,

analogously to the scenario in figure 4, that the oscillatory characteristics of the tail change
(figure 5(c)), and at a certain point (here CK ≈ 0.122 18) the continuation stops as the solution
bifurcates with another phonobreather whose code is given in the caption of figure 5. Now,
comparing the code of this solution with the code of the solution obtained immediately after
jumping over the first resonance (figure 4), we find that they are identical except for having all
signs ±2 reversed. Thus, the scenario is equivalent to that observed for the bifurcation of the
solutions connecting to the first phantom breather in figure 4. We summarize the bifurcation
scheme for the first three breather–phonon resonances by plotting the corresponding energy-
coupling diagram in figure 5(d). In this figure, each phantom breather corresponds to the
flat part of the energy curve connecting two particular phonobreathers, and for each phantom
breather the code of the phonobreather connecting from smaller coupling is obtained by
reversing the signs of all codes ±2 in the code of the phonobreather connecting to the previous
phantom (or pure) breather from higher coupling. This procedure repeats itself, and thus we
have a class of phantom breathers which all have small-amplitude tails in the transition regime
between the two connecting phonobreathers.
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Figure 5. (a) Smooth continuation at constant frequency ωb = 0.6 of the second intraband phantom
breather in a Morse KG system with N = 20, forming the phonobreather with code [−220 − 220 −
22 − 2212 − 22 − 202 − 202] for increasing coupling and bifurcating with the phonobreather
with code [2 − 220 − 22 − 22 − 2212 − 22 − 22 − 202 − 2] for decreasing coupling (at
CK ≈ 0.122 18). (b) Variation of the angles of the Floquet eigenvalues for the continuation in (a)
(note the avoided collision at θ = 0 at the same point (CK ≈ 0.142) where the phonon tail in
the amplitudes in (a) becomes visible). (c) Enlargement of the tail in (a) in the phantom breather
regime (note the gradual change of nature of the tail, which becomes almost flat for CK ≈ 0.137).
(d) Total energy (2) versus CK for the continuation of (i) (black line) a simple breather into a q = π

phonobreather (cf figure 3); (ii) (light gray line) the two phonobreather solutions connecting to
the first phantom breather (‘phantom 1’) (cf figure 4); (iii) (dark gray line) the two phonobreather
solutions connecting to the second phantom breather (‘phantom 2’) as in (a)–(c) above.

Let us also briefly comment on the stability of the phantom breather solutions. In fact, for
the particular choices of parameter values used in figures 4 and 5 they are generally unstable,
but these instability mechanisms are not a particular characteristic of the phantom breathers but
occur also for the pure breathers before the second harmonic enters the phonon band for these
values of CK respectively ωb [22, 23]. Performing, for example, the corresponding continuation
as in figure 4(b) but for the smaller value of the coupling CK = 0.05, we typically find linearly
stable phantom breathers. However, in some cases additional instability mechanisms may
also occur for the phantom breathers. These may be associated with resonances with phonon-
modes antisymmetric with respect to the breather centre, which do not yield phonobreathers
appearing in the cascade of bifurcations illustrated in figure 5(d), but typically cause narrow
regimes of instabilities through eigenvalue collisions at +1 (see an example in figure 5(b)
for CK ≈ 0.1295–0.1300). Also additional oscillatory instabilities (i.e. complex eigenvalues
appearing from eigenvalue collisions on the unit circle) such as those found for the pure
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standing-wave phonons [20, 21] may appear for the phantom breathers, but as long as the tail
amplitude is small they are weak and only appear in narrow parameter regimes. On the other
hand, in the pure phonobreather regime with large tail amplitudes, these instabilities may be
considerable as can be seen in figures 3(b) and 5(b) (they are identified in these figures as two
curves merging at the point where the eigenvalue pair leaves the unit circle, and splitting when
the pair returns).

3.1.3. Vanishing of the tail. The scenario described in the previous section and summarized
in figure 5(d) generally occurs when varying one parameter (e.g. frequency or coupling) while
keeping all others fixed. The tail of the phantom breathers found in the transition regime
between two neighbouring phonobreathers changes in the transition, for, though its amplitude
might be very small as in figure 5(c), it is typically non-zero even at the point where it attains its
minimum. However, by considering variations of both frequency and coupling, we might find
special parameter values where the tail completely vanishes and the phantom breather becomes
exponentially localized for the whole system. To analyse the origin of this behaviour, we
reconsider the scenario in figure 5 by performing the continuation towards smaller frequencies
for the ‘phantom 2’ solution for different values of the coupling in its existence regime. One
could then expect to find generally the same scenario as for the continuation towards larger
coupling in figure 5; however, this does not turn out to be the case. By contrast, we find that
the expected continuation of the phantom breather into the phonobreather with the oscillation
pattern given in figure 5 only occurs if CK > C

(cr)
K ≈ 0.135 774 8; for smaller values of the

coupling the phonon oscillations of the resulting phonobreather will have opposite phases (i.e.
codes ±2 → ∓2). Thus, exactly at the point CK = C

(cr)
K where the phantom breather ‘changes

phonobreather’, the oscillations from the two antiphased phonons should cancel each other
and leave a completely localized phantom breather. Investigating this scenario in detail below
shows that this indeed is the case.

We show in figure 6 the bifurcation scenario in the energy versus frequency plane
for some values of the coupling around the critical value C

(cr)
K . As mentioned above, for

CK < C
(cr)
K the continuation of the second phantom breather towards lower frequencies

yields a phonobreather with code [2 − 202 − 202 − 22 − 21 − 22 − 220 − 220 − 2],
i.e. having σ1 = +2 (opposite to that in figure 5). When CK is considerably smaller
than C

(cr)
K , the energy diagram (figure 6(a)) has the structure of an avoided pitchfork

bifurcation analogous to figure 4(d), and, for ωb close to the resonance, the energy
of the above phonobreather connecting to the second phantom breather is larger than
that of the next (third) phantom breather and the two phonobreathers connecting to it.
However, for smaller ωb the energy curves corresponding to two phonobreathers with
the phonon parts in antiphase (here, the solution above with σ1 = +2 and the solution
[−220 − 220 − 22 − 2212 − 22 − 202 − 202] with σ1 = −2) might cross, as is seen in
figure 6(a) (and also for two other cases in figure 5(d) for increasing coupling). In general,
even though the energies of the two solutions coincide at the crossing the amplitude patterns do
not, and thus the point of crossing is generally not a point of bifurcation. Now, increasing CK

approaching C
(cr)
K the energy curves for phantom 3 and the phonobreather with σ1 = −2 will

move in the direction of larger ωb (to the right in the figures relative also to the curve for phantom
2 and its phonobreather), and consequently the crossing of the energy curves will occur for
smaller and smaller energies (i.e. move downwards in the figure). At a certain value of CK the
situation illustrated in figure 6(b) is reached, where the point of crossing has passed the point
of bifurcation between phantom 3 and the σ1 = −2 phonobreather, so that for somewhat larger
coupling both solutions will have the characters of phantom breathers (i.e. with very small tail)
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Figure 6. Bifurcation scheme showing total energy (2) versus frequency ωb for five different
values of the coupling CK around the critical value C

(cr)
K ≈ 0.135 7748, where the phonon part

of the phonobreather in continuation of the ‘phantom 2’ solution in figure 5 changes sign. In (a)
CK = 0.13, in (b) CK = 0.135 77, in (c) CK = 0.135 7748 � C

(cr)
K , in (d) CK = 0.135 775

and in (e) CK = 0.135 78. In the leftmost part of the figures the solutions are, from above, the
phonobreathers with codes [−220 − 220 − 22 − 2212 − 22 − 202 − 202] and [2 − 202 − 202 −
22 − 21 − 22 − 220 − 220 − 2], respectively, and the third phantom breather continuing towards
smaller ωb until the next resonance. In the rightmost part of the figures the only solution is the
second phantom breather, while in (c) and (d) also an intermediate solution appears connecting the
second phantom breather with the phonobreather [−220 − 220 − 22 − 2212 − 22 − 202 − 202].
Note that there are no bifurcations at the points of crossing of curves in (a) and (b); even though the
solutions at this point have the same energy they are not identical. Note also the tiny gap around
ωb ≈ 0.595 0466 in (c) which closes exactly at CK = C

(cr)
K .

rather than phonobreathers when their energy coincide. Increasing further the coupling yields
a critical value, CK = C

(cr)
K , where also the slopes of the two energy curves become equal

at the point where they cross. At this point, there is a true bifurcation and the solutions are
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Figure 7. (a) Tail of the solutions belonging to the intermediate branch of the Z-shaped part of
the energy curve in figure 6(c) (in full scale the solutions are practically indistinguishable from the
phantom breather part of figure 5(a)). (b) Logarithmic plot of the solution in (a) with the smallest
tail, appearing for ωb ≈ 0.595 047 4592 (note the almost perfect exponential decay).

identical. For CK close to, but larger than, C
(cr)
K the situation illustrated in figure 6(c) appears.

Now, the two phantom breathers have interchanged their connecting phonobreathers, so that
phantom 3 connects to the phonobreather with σ1 = +2, while phantom 2 connects to the
phonobreather with σ1 = −2. However, here the latter connection does not appear through
monotonic continuation versus frequency but only indirectly via an intermediate branch, thus
creating a zig-zag-like, Z-type, energy diagram. Increasing further CK the Z-part straightens
and the intermediate regime shrinks (figure 6(d)), and finally (figure 6(e)) there is again a
monotonic continuation of phantom 2 into a phonobreather as for CK < C

(cr)
K , but now into

the phonobreather with σ1 = −2 (as in figure 5).
It is interesting to note that a similar bifurcation pattern was observed recently in a

different context in a study of discrete breathers in anisotropic ferromagnetic spin chains [24].
Investigating for this model the continuation of discrete multibreathers into the continuum
magnetic soliton, it was found that when varying some parameter the continuum soliton could
continue into different possible multibreathers, and the bifurcation scenario switching the
multibreather connecting to the soliton was similar (although not completely identical) to
the scenario switching the phonobreather connecting to the phantom breather in our model
(compare figure 6 here with figure 6 of [24]).

Let us now consider the shape of the tail of the solution belonging to the intermediate
part of the Z-type curve in figure 6(c), i.e. very close to the critical value C

(cr)
K . In figure 7(a)

we show how the tail varies along this branch. It is apparent that going from the smallest
to the largest values of ωb in its existence regime, the oscillation pattern of the six first
sites changes from [2 − 202 − 20] to [−220 − 220] (the amplitudes of the rightmost sites
are relatively larger due to the exponential decay of the central breather part). Thus, in
passing from these two antiphased phonon tails, the solution should pass through a point of
zero amplitude tail at some intermediate frequency, where the contributions from the two
antiphased phonons cancel leaving only the exponentially decaying part coming from the
central breather. That this indeed happens is illustrated in figure 7(b), showing a practically
perfect exponential decay over the whole system, with the exception of the three central
sites and the boundary site n = 1. In fact, strictly speaking there is an undisturbed smooth
continuation between the two phonobreathers [2 − 202 − 202 − 22 − 21 − 22 − 220 −
220 − 2] and [−220 − 220 − 22 − 2212 − 22 − 202 − 202] only at CK = C

(cr)
K ,

since this is the only case where the two solutions connect without interruption. Thus,
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Figure 8. (a) Floquet eigenvalues for the solutions belonging to the intermediate branch of the
Z-shaped part of the energy curve in figure 6(c) (on this scale the eigenvalues for all solutions on
this branch appear identical). (b) Magnification of the region around � = 1 in (a), with the real
part of � plotted as a function of frequency.

only exactly at CK = C
(cr)
K should we expect the tail to completely vanish; going away

from this exact value the tail will also have some contribution from the other phonobreathers
connecting to the phantom breather (as in figures 4(c) and 5(c)). However, as shown in
figure 7, also for CK very close to, but not exactly at, the critical value, the family of
solutions belonging to the intermediate branch of the Z-shaped energy curve corresponds
almost exactly to a pure transition between the two antiphased solutions (with only a very
weak influence from the solution connecting to phantom 2 from higher frequencies), and thus
this family contains an almost perfectly exponentially localized solution at some ωb as shown in
figure 7(b).

Let us also comment on the stability of the solutions belonging to the intermediate branch
of the Z-shaped curve for CK � C

(cr)
K . The eigenvalues of the Floquet matrix for these

solutions for CK = 0.135 7748 are shown in figure 8. As is seen in figure 8(a) there is all
the time a quartet of rather large complex eigenvalues outside the unit circle, and thus the
solutions are always unstable through oscillatory instabilities. However, these instabilities are
not characteristic only of this branch of solutions, rather they appear for all related solutions
with similar values of CK and ωb (e.g. all solutions represented in figure 6). Thus, as they
are practically independent of the nature of the tails, the oscillatory instabilities originate
in resonating internal oscillations around the central breather sites. However, looking more
closely around the point � = 1 we find also (figure 8(b)) additional very weak real instabilities
but only for a part of the intermediate regime. These stability changes are related to a change
of the slope of the corresponding energy curve (figure 6(c)), and the additional real instabilities
appear when dH/dωb > 0. In particular, we see that the solution with the minimal tail in
figure 7(b) is weakly unstable also through these real instabilities.

We end this part with a more general remark. Although in general (except at critical
points C

(cr)
K ) it is not possible in a smooth way to continue one phantom breather through a

resonance regime into another phantom breather by monotonic variation of one parameter,
the existence of critical points

(
ω

(cr)
b , C

(cr)
K

)
in the (ωb, CK) plane renders possible a smooth

continuation of one phantom breather to the next by continuing along a path which encircles
the critical point. For example, starting with the second phantom breather and continuing it
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Figure 9. Amplitudes (a) and angles of Floquet eigenvalues (b) (the inset in (b) shows enlargement
of the zone close to θ = 0) for continuation versus coupling at fixed ωb = 0.99 of a simple breather
in a Morse potential KG chain of N = 20 oscillators.

towards larger coupling into the phonobreather with σ1 = −2 as in figure 5, we can then, for
fixed CK > C

(cr)
K , continue it towards smaller ωb and then again towards smaller CK for some

fixed ωb < ω
(cr)
b until it connects with the third phantom breather at some CK < C

(cr)
K as in

figures 6(a) and (b).

3.1.4. First harmonic q = 0 resonance. In the previous sections, we have chosen the
breather frequency ωb sufficiently small so as to have the oscillation amplitude, as governed
by the exponential decay of the fundamental harmonic, negligibly small at the boundaries
at the point where 2ωb enters the linear phonon band. However, if we consider frequencies
close to the lower band edge ωb = 1 for small systems, the scenario of breather–phonon
resonances might be different from that described above, since the breather already for small
couplings will spread out over a large part of the system and have a considerable amplitude at
the boundaries. In particular, the breather might then bifurcate with the nonlinear band edge
q = 0 phonon before the regime of second-harmonic resonances is reached. This scenario
is illustrated in figure 9, where we have chosen a frequency very close to the linear phonon
band edge, ωb = 0.99, and a rather small system, N = 20. As the coupling is increased the
breather gradually spreads over all the system and loses its characteristic tail exponentially
decaying towards zero. At a certain point (CK ≈ 0.372 122 in figure 9) the breather bifurcates
with the q = 0 nonlinear phonon, and for larger couplings a constant-amplitude state is
reached (with an amplitude identical to that of uncoupled oscillators with frequency ωb). This
bifurcation is signalled by a collision at +1 in the Floquet eigenvalue spectrum (figure 9(b))
and, in fact, exactly at the bifurcation point the numerical scheme does not converge due
to non-invertibility. However, similar to the transformation of a phonobreather into a pure
nonlinear phonon in figure 3, the non-convergence is typically not observed unless a very
small step-length is used.

Thus, for the small system in figure 9 the breather transforms into a constant-amplitude
state before reaching the linear second-harmonic resonances, which for ωb = 0.99 appear
only for CK > 0.7301. However, the value of CK where the q = 0 resonance occurs increases
quite rapidly with the size of the system, so that when N � 30 the breather still has a localized
(although wide spread) character when the regime of second-harmonic resonances is entered
for ωb = 0.99.
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Figure 10. (a) Amplitudes un(0) for the continuation towards smaller frequency ωb of the
q = 0 phonobreather [. . . 1112111 . . .] in a quartic KG system with N = 21 and CK = 0.1.
At ωb = 1 the tail amplitude goes to zero and the phonobreather transforms into the simple
breather [. . . 0002000 . . .]. (b) The breather–phonobreather bifurcation in the plane (ωb,H ). The
lower (black) curve shows the energy of the breather, the upper (grey) curve the energy of the
phonobreather.

3.2. The quartic potential

We will here briefly discuss the generation of phonobreathers in the case of hard potentials, and
choose the quartic potential (5) as an explicit example. The scenario is different from that of a
soft potential since also the fundamental harmonic now necessarily lies above the linear band,
and thus in the continuation the fundamental harmonic will always reach the phonon band
before the higher harmonics do. Thus, we will not observe the smooth transition of a breather
into a phonobreather, phantom breathers, etc discussed in section 3.1; instead, the breather
amplitude will just decay to zero as the fundamental frequency reaches the band. However,
as mentioned in section 2, we can still construct phonobreathers from the anticontinuous limit
at ωb > 1, e.g. by choosing a central breather site with code |σn| = p′ and a standing-
wave phonon tail with wave vector q generated using (9) (and the transformation below
this equation) with p < p′. In the simplest case, we can choose p′ = 2 and p = 1. Then,
continuing such a solution first towards higher coupling at constant frequency and then towards
lower frequency at constant coupling, we expect the tail amplitude to vanish at the point where
the linear dispersion curve (8) for frequency pωb and wave vector q is reached. This scenario
is illustrated in figure 10 for a single-site breather with p′ = 2 embedded in a q = 0 phonon
tail with p = 1, which disappears for ωb < 1 as the phonobreather transforms into a simple
breather with frequency 2ωb. Thus, viewed in the direction of increasing frequency, there
is a period-doubling bifurcation at ωb = 1, constituting a complete pitchfork as shown in
figure 10(b) (the two phonobreather solutions with central codes ±2 have identical energy due
to the symmetry of the potential). This is also seen in the Floquet spectrum as a collision at
+1 for the continuation with period Tb = 2π/ωb or at −1 in the continuation of the simple
breather at its fundamental period Tb/2.

4. Conclusions

In conclusion, we have investigated by numerical continuation techniques several types of
exact solutions resulting from interaction between nonlinear localized (breather) and extended
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(phonon) modes in finite-size closed chains of Klein–Gordon type. For the case of a soft
(Morse) on-site potential, we have analysed the transition from a localized breather into a
non-localized phonobreather with a small-amplitude tail as a higher breather harmonic enters
the linear phonon band [13]. The breather–phonobreather transition occurs progressively in
finite-size systems, and becomes a sharp bifurcation only in the limit of infinite system size.
We have also calculated numerically exact practically localized breather-like solutions with
frequency harmonics residing inside the linear phonon band, in-between the linear dispersion
curves which may be sparsely distributed if the system size is relatively small. These solutions,
which we term ‘phantom breathers’, correspond to the ‘intraband breathers’ found earlier for
disordered systems [18], but in contrast to the latter the phantom breathers in a homogeneous
system generically are not exponentially localized but have a small-amplitude tail with a
pattern corresponding to a neighbouring phonon mode. The phantom breathers occur in
the transition regime between two neighbouring, bifurcating phonobreathers with tails of
different coding sequences, and, as for the transition between the pure breather and the
band edge phonobreather, the transition between a phantom breather and its neighbouring
phonobreathers is not distinct but occurs gradually. However, for special parameter values we
find that the phantom breather connects simultaneously to two phonobreathers with phonon
parts having the same pattern but oscillating with opposite phases; in this case the phonon tails
may exactly cancel and leave a phantom breather which is exponentially localized for the whole
system. This mechanism is reminiscent of that leading to ‘embedded solitons’ in continuous
systems (see, e.g., [25]). Considering briefly the case of a hard (quartic) on-site potential,
where the scenario necessarily is different since all harmonics (including the fundamental)
lie above the phonon band, we constructed phonobreathers from the anticontinuous limit and
showed how they appear from period-doubling bifurcations in the continuation of a simple
breather when half the breather frequency enters the linear phonon band.

We remark that generally, the small-amplitude tails of the exact phantom breather solutions
appearing when one of the higher harmonics of the fundamental breather frequency is inside
the phonon band, are quasilinear stationary phonons which could be interpreted by the fact
that a strictly localized breather solution would radiate energy as a travelling phonon, and
thus could not persist as an exact time-periodic solution. Then, to maintain the solution it is
necessary to send back another travelling phonon interacting with the breather in order to keep
its energy constant. The quasilinear superposition of the outgoing travelling wave and the
incoming wave makes the observed tail. Then, from this remark we could calculate the energy
radiation of an approximate localized breather by decomposing the tail of the exact phantom
breather at its frequency into the superposition of two counterpropagating travelling waves.
A formal equation could be obtained in principle from this radiation rate versus frequency for
the decay of the breather (cf, e.g., [26]), which ends at the threshold value where there are no
harmonics in the phonon band.

Even though we here have concentrated on describing the penetration of a harmonic of
a simple breather into the phonon band, similar scenarios should appear for multibreathers,
leading analogously to ‘phonomultibreathers’and ‘phantom multibreathers’ in the cases where
the original multibreathers are continuable sufficiently far so as to reach the phonon band (in
certain cases multibreathers might be lost before through bifurcations). In fact, we have
already in [21] (section 5) considered one particular example of this, with the fundamental
multibreather itself being a nonlinear standing-wave phonon generated from (9). There we
observed the effects of higher-harmonic resonances as a gradual transformation of the wave
vector and frequency of the initial wave to those corresponding to the resonating phonon
(figures 12 and 16 in [21]). We also found standing waves with the original wave vector existing
in-between phonon resonances which, in analogy with the phantom breathers considered here,
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could be termed ‘phantom standing waves’. We note that, in contrast to the case for simple
breathers, these higher-harmonic resonances for standing waves may appear also for hard on-
site potentials if the wave vector of the fundamental standing wave is sufficiently small, since
then the higher harmonics may reach the phonon band before the amplitude of the fundamental
wave goes to zero, which happens only when it reaches its linear dispersion curve inside the
phonon band. Some further aspects of higher-harmonic resonances for standing-wave phonons
were also considered in [19].

We end with a brief speculation concerning practical applications of our results. Since
the phantom breathers appear in finite systems in-between the lines of the phonon spectrum,
we do not expect them to be observable in very large systems such as crystals, where the
number of atoms is so large that the phonon spectrum is practically continuous. However,
there are several examples of real finite systems where discrete breathers are believed to exist,
and where also the phantom breather effect could be expected. For example, in molecular
systems such as hydrocarbon structures of various sizes, breathers clearly appear in molecular
dynamics simulations for realistic parameter values [28, 29], and also resonances with normal
modes are observed. Moreover, artificially built devices exhibiting breathers such as arrays of
Josephson junctions or coupled waveguides are finite and could involve only a small number of
oscillators. A particularly interesting candidate could be quadratic nonlinear photonic crystals
of the type described and analysed in [30].
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Appendix A. Band analysis of breather–phonobreather bifurcation

The ‘band analysis’ technique for analysing and interpreting instabilities and bifurcations
found from the Floquet eigenvalue spectrum was introduced and extensively described in [1];
here we give only a very brief summary and an example of its use in the analysis of the
breather–phonobreather transition from section 3.1.1. The linearized (Hill) equations (6) can
be interpreted as the eigenvalue equations for the ‘Newton operator’N (u, CK),

(N (u, CK) · ε)n ≡ ε̈n + V ′′(un)εn − CK(εn+1 + εn−1 − 2εn) = Eεn (A.1)

for the particular eigenvalue E = 0. For time-periodic un with period Tb the eigenvectors of
(A.1) fulfil the Bloch condition εn(θ, Tb) = eiθ εn(θ, 0), and the corresponding eigenvalues
Eν(θ) are 2π-periodic continuous functions of θ defining, for each ν, a band through the
dispersion curve Eν(θ). The intersection points of the bands with the axis E = 0 yield the
Floquet exponents θν (i.e. angles of eigenvalues on the unit circle of the Floquet matrix F0

defined by (10)), and thus linear stability requires, for a system of N oscillators, to have 2N

intersections between the bands Eν(θ) and the axis E = 0 (counted with their multiplicities).
When varying CK or Tb the bands evolve, and instabilities appear when bands lose their
intersections with E = 0.

Figure A1 shows the band spectra close to (θ,E) = (0, 0) for several parameter values
in the regime where the breather–phonobreather transition in figure 2 takes place. In all
figures, there is a band tangent to E = 0 at θ = 0 corresponding to the ‘phase mode’ solution
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Figure A1. Band spectra for the formation of a phonobreather from a breather in figure 2. (a),
(b) and (c) show the spectra around the avoided collision of Floquet eigenvalues at +1 occurring
for ωb ≈ 0.5745 (note the gradual change of forms of the bands close to θ = 0); (d) ωb = 0.48
shows the gradual rise of band ‘2’ which, (e) at ωb = 0.4711, cuts the axis E = 0 (collision at +1
in figure 2(c)) and yields an instability; ( f ) band ‘3’ finally cuts E = 0 corresponding to the true
collision at +1 observed in figure 2(c) at ωb ≈ 0.4346. The apparent gaps within the bands around
their local maxima and minima are merely graphical artefacts due to a finite sample of points.

εn(0, t) = u̇n(t) for E = 0, and with a curvature related to the derivative of the energy H of
the solution un(t) with respect to its frequency ωb as [17]

d2E

dθ2

∣∣∣∣
θ=0

= −ω2
b

π

dH

dωb
. (A.2)
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In figure A1(a) the breather is still localized, and the phase mode band is flat while the other
bands, corresponding to extended phonon modes, are steep around E = 0. We note that as
the phase mode band collides with the phonon mode bands, its trace can be followed as a
‘ghost path’ consisting of ‘wiggles’ on the phonon mode bands [27]. These wiggles connect
each phonon mode band which corresponds to a mode with the same spatial symmetry as the
breather to the neighbouring band of the same symmetry, while bands corresponding to modes
of opposite symmetry are left unchanged. Thus, due to the presence of the breather, the bands
corresponding to the spatially symmetric modes will not have a unique wave vector q as they
would have in the absence of the central breather, but consist of different parts with different
wave vectors connected to each other. In particular, the phase mode band is connected to the
symmetric band edge (q = π) phonon mode constituting the band indexed ‘1’ in figure A1.

Now, approaching the point where 2ωb enters the phonon band (figure A1(b)) the phonon
mode bands move upwards, and the intersections with the axis E = 0 move closer to θ = 0.
Note however that due to the wiggled nature of the bands the closest intersection in fact belongs
to the band indexed ‘3’ and not to the band ‘1’ which is connected to the phase mode, and
approaching the point of resonance ωb ≈ 0.5745 this intersection will appear on its flat part.
Consequently, the intersection point will be ‘repelled’ from θ = 0 at the point of resonance,
yielding the avoided collision in figure 2(c). If the system size is increased there will be more
bands and the distance between neighbouring bands decreases, and thus the flat part between
two connected bands becomes shorter and the closest intersection point approaches θ = 0 in
the limit of an infinite system as illustrated in figure 2(d).

Comparing the band spectra just before and after the breather–phonobreather transition
(figures A1(b) and (c)) we see no drastic changes, but rather a continuous deformation of the
bands. In particular, we should note the gradual increase of curvature of the phase mode band,
consistent according to (A.2) with the change of slope of the curve H(ωb) in figure 4(d). We
should also note the ‘dip’ of the band ‘3’, which in the absence of a breather would have
constituted the lower part of the band edge q = π band, and whose minimum then would have
crossed E = 0 exactly at the point of resonance yielding a true collision of Floquet eigenvalues
at +1. Decreasing ωb further into the pure phonobreather regime (figure A1(d)) the curvature
of all bands becomes smaller and the ‘dip’ character of the lower part of band ‘3’ disappears,
corresponding to the regime where the Floquet eigenvalues move away from θ = 0 in
figures 2(b) and (c). Moreover, the bands move upwards, and in figure A1(e) the minimum of
band ‘2’, corresponding to spatially antisymmetric modes, cuts E = 0 yielding the instability
at ωb ≈ 0.4711 seen in figure 2(c). Finally, we show in figure A1( f) how eventually also the
minimum of band ‘3’ reaches E = 0, yielding the collision at +1 of Floquet eigenvalues at
ωb ≈ 0.4346 in figure 2(c) and an instability for smaller ωb.
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